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L STATEMENT OF THE PROBLEM STUDIED .

Factors that play a significant role during the penetration of metal targets by
projectiles include material properties, impact velocity, projectile shape, target support
position, and relative dimensions of the target and the projectile. Recently, emphasis has
been placed on kinetic energy penetrators, which for terminal ballistic purposes may be
considered as long metal rods traveling at high speeds. For impact velocities in the range
of 2 to 10 km/sec, compressible hydrodynamic flow equations can be used to describe
adequately the impact and penetration phenomena, because large stresses occurring in
hypervelocity impact permit one to neglect the rigidity and compressibility of the striking
bodies. Models, which require the use of the Bernoulli equation or its modification to
describe this hypervelocity impact, have been proposed by Birkhoff et al' and Pack and
Evans.® At ordnance velocities (0.5 to 2 km/sec), material strength becomes an important
parameter. Allen and Rogers® modified the Pack and Evans® flow model by representing
the strength as a resistive pressure. This idea was taken further by Alekseevskii* and Tate,**
who considered separate resistive pressures for the penetrator and the target. These
resistive pressures are empirically determined quantities, and the predicted results depend
strongly upon the assumed values of these pressures. As described lucidly by Wright’ in his
survey article on long rod penetrators, Tate’s model is difficult to use for quantitative
purposes, because the strength parameters depend upon the velocity of impact and the
particular combination of materials involved. Wright and Frank® recently re-examined
Tate’s theory and derived expressions for the resistive pressures in terms of mass densities,
yield strengths of the penetrator and target materials, and penetrator speed. They
postulated the expression . ;

F = A @I, + bpp? + cp A ¢

for the force F, delivered to the target during the nearly steady portion of the penetration
process. In equation (1) A, is the cross-sectional area of the cavity, L, is the yield stress for
the target material in a quasistatic simple tension or compression test, p, equals the mass
density of the target material, p and p equal, respectively, the axial velocity and axial
acceleration of the target/penetrator interface, and a, b, and ¢ are nondimensional numbers
that depend on material parameters. Dehn’ assumed

F

, =2+ bp +cp’ @)

and gave values of a, b, and c in terms of material parameters for the target. Strictly
speaking, the modified Bernoulli’s equation is valid only when the flow fields are steady. .
Batra and Wright'® studied numerically the steady state penetration of a rigid/perfectly
plastic target by a hemispherical nosed rigid cylindrical rod and found a = 3.9, and b =
0.0773. Batra'""? subsequently accounted for strain hardening, strain-rate hardening, and
thermal softening, as well as different nose shapes, and found that the coefficients varied
by a factor of at Jeast three, depended strongly on the nose shape, and decreased for a more
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pointed shape.

The one-dimensional theories ignore the lateral motion, plastic flow, and the detailed
dynamic effects. The paper by Backman and Goldsmith® is an authoritative and superb
review of the open literature on ballistic penetration, containing 278 reference citations from
the 1800’s to 1977. They describe different physical mechanisms involved in the penetration
and perforation processes, and also discuss a number of engineering models. Jonas and
Zukas'* reviewed various analytical methods for the study of kinetic energy projectile-armor
interaction at ordnance velocities and placed particular emphasis on three-dimensional
numerical simulation of perforation. Anderson and Bodner” have recently reviewed
engineering models for penetration and some of the major advances in hydrocode modeling
of penetration problems. Three books,'*!""* published during the past few ye~-s, include
extensive discussions of the engineering models, experimental techniques, ana analytical
modeling of ballistic perforation.

Manganello and Abbott,'”” Wingrove and Wulf?® and Recht? observed that the
penetration resistance of some armor materials is reduced, even though these materials
exhibit increased static mechanical strength. During penetration of such targets the
formation of adiabatic shear bands leads to a sharp drop in shear yield stress after the
formation of a plug, and the penetration resistance of the target is severely reduced. It has
been suggested?® that the material in the shear band melts. Woodward® has proposed a
model for adiabatic shear plugging failure of targets. He considered the penetration of
ductile metal targets impinged upon by a sharp conical projectile and assumed that the
penetration is achieved by radial expansion of a hole in the plate from zero to the
penetrator radius. Wingrove's® experiments show that sharp corners of flat-ended
projectiles cause deformation in a narrow zone of the target, and hemispherical and ogive
nose shapes progressively broaden the deformation pattern. Because of the formation of
the thermally-softened shear zone and the difference in fracture behavior for breakout, flat-
ended projectiles penetrate materials susceptible to adiabatic shear with greater ease than
do radiused projectiles.

Awerbuch,”® Awerbuch and Bodner,” Ravid and Bodner,® and Ravid, Bodner, and
Holcman® have developed models with which to analyze the normal perforation of metallic
plates by projectiles. The penetration process is presumed to occur in several
interconnected stages, with plug formation and ejection being the principal mechanism of
plate perforation. They presumed a kinematically admissible flow field and found the
unknown parameters by minimizing thz plastic dissipation. They characterized the
procedure as being "a modification of the upper bound theorem of plasticity to include
dynamic effects”. Even if such a theorem were valid, it is bard to tell how close such a
bound might be to the solution of the problem. These authors have included the
dependence of the yield stress upon the strain rate and studied a purely mechanical
problem.

Recht® has adapted the Taylor’' mode! of mushrooming to the situation in which the
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penetrator is allowed to move into the target, and both erosion and shear mass loss are
allowed in the penetrator. The principal difficulty is the specification of velocities for the
plastic waves in the projectile and the target in order to obtain a unique solution for the rate
of interface movement. Brooks*? and Brooks and Erickson* have demonstrated traasitions
in behavior such that, at increased velocities, it is possible to observe a reduced depth of
penetration over a range of velocities. The transition is related to the degree of radial
constraint offered by the surrounding target material and its ability to resirict projectile
deformation. The transition velocity depends strongly upon the projectile tip geometry.
Above the transition velocity, the deformation is described as “jetting” to illustrate a
similarity in behavior to shaped charge jets. Forrestal et aL* have used the cavity expansion
model to predict the penetration depths for relatively rigid projectiles striking deformable
semi-infinite targets.

An important and still totally unresolved problem is that of selecting the most
appropriate constitutive relation for the penetrator and target materials, The constitutive
relation employed should adequately model the material response over the range of
deformations expected to occur in the problem. However, the computed values of the
deformation fields generally depend strongly upon the constitutive assumptions made. A
way out of this dilemma is to choose a constitutive relation, solve the problem, check to see
if the constitutive assumptions are valid over the range of computed deformations, and, if
necessary, solve the problem again with the modified constitutive relation. In the last few
years, many new theories*?%% of large deformation elasto-plasticity have been proposed.
We use three such theories to analyze the steady state penetration problem.

The work conducted under this contract involved the analysis of the steady state
axisymmetric penetration problems with the objectives of delineating important material and
kinematic variables that should be included in simpler penetration models, and, if possible,
propose such a model.

II. SUMMARY OF RESULTS

When both the penetrator and target materials are assumed to be thermally
softening, but strain and strain-rate hardening, the bottom part of the target/penetrator
interface was found to be ellipsoidal rather than hemispherical.® The peak pressures near
the stagnation point in the penetrator and target regions approached 4.58 o,, and 14 o,
respectively, for o,/0, = 3.06. Here o, and o, equal, respectively, the yield stress in a
quasistatic simple compression test for the penetrator and target materials. The axial force
on the penetrator equalled 8.91F, 11.52F, and 14.5F (F = =t/0,,) for stagnation point
speeds of 450 m/s, 500 m/s, and 550 m/s, respectively. A significant contribution to the
resisting force is made by the consideration of strain-rate hardening effects. When the
penetrator and target materials are modeled as rigid/perfectly plastic,” the resistive pressure
terms in the modified Bernoulli’s equation were found to depend upon the ratio of the mass
densities of the target and the penetrator, as well as on the penetration speed.




The consideration of elastic deformations of the target reduced the peak value of the
hydrostatic pressure acting at the stagnation point, the axial resisting force experienced by
the rigid penetrator, and the target resistance parameter appearing in the modified Bernoulli
equation by nearly 28%, 25%, and 25%, respec 'vely, as compared to those for a
rigid/perfectly plastic target.*

When the flow rules due to Litonski-Batra, Bodner-Partom, and Brown, Kim, and
Anand were calibrated against a hypothetical compression test performed at a nominal
strain-rate of 3300 sec” and then used to study the steady state axisymmetric deformations
of a target, the three constitutive relations gave nearly the same value of the resisting force
acting on the penetrator, temperature rise of material particles in the vicinity of the
target/penetrator interface, and other macroscopic measures of deformation, such as the
effective stress and the effective strain-rate.* However, when the Litonski-Batra and the
Bodner-Partom flow rules are calibrated against a simple shear test, the Bodner-Partom
model gave a very high value of the hydrostatic pressure at the target/penetrator interface
as compared to that given by the Litonski-Batra flow rule.*

The transverse isotropy of the target material affected significantly its deformations
and the resisting force it exerts on the penetrator.”

III. BRIEF REVIEW OF THE COMPLETED WORK

We?® have studied axisymmetric deformations of a thermoviscoplastic rod penetrating
a thick thermoviscoplastic target when their deformations appear steady to an observer
situated at the stagnation point and moving with it. Both the rod and the target material
are assumed to exhibit strain-rate hardening and thermal softening, and the contact between
them at the common interface is smooth. We have plotted in Fig. 1 the shapes of the free
surface of the deformed penetrator, and the target/penetrator interface for three values of
the speed of the stagnation point. In order to elucidate the dependence of the location of
the stagnation point upon the speeds of penetration, the ordinate is measured from the
bottom surface of the target region studied. The stagnation point moves away from the free
surface of the deformed penetrator as the speed of penetration is increased. Also, with the
increase in the speed of peuetration, the distance between the free surface of the
undeformed penetrator and the deformed penetrator particles moving rearward increases.
The shape of the target/penetrator interface also depends strongly upon the penetration
speed. The peak values of the temperature rise 8, second invariant I of the strain-rate

tensor D and the hydrostatic pressure p, and where they occur are influenced by the values

of the strain-rate hardening exponents m, and m, for the penetrator and target, respectively.
This is evidenced by the information provided in Table 1.

One of the challenging problems in penetration mechanics is to find constitutive
relations that are valid over a wide range of strains, strain rates, and temperatures likely to




Table 1. Effect of m, and m, on p,, La,, and py, in the penetrator target regions’

Values om (oc) I-u Pooax (x,v.z)

of m Penetrator Target Penetrator Target Penetrator Targe:
m, = 0.025 2322 189.5 5.25 4.185 0.8975 1.017
m, = 0.025 (0.17,0.06)  (0.479,0.05) (1.135,1.01) (1.096,0.175) (0.0,0.0) (0.148,-0.012)
m, = 0.005 199.8 167.1 4.26 4.108 0.9409 1.005
m = 0.025 (0.165,0.04) (0.464,0.04) (1.193,0.96) (1.074,0.164) (0.0,0.0) (0.149,-0.004)
m, = 0.0 193.07 164.15 4.11 4.174 0.9562 0.9951
m, = 0.025 (0.165,0.03) (0.525,0.04) (0.052,0.02) (1.26,0.26) (0.0,0.0) (0.113,0.002)
m, = 0.025 229.9 183.2 5.27 4.595 0.8957 0.978
m, = 0005 (0.15-0.02) (0.48,0.02) (1.134,1.02) (1.86,0.77) (0.0,0.0) (0.15,-0.014)
m, = 0.025 230.7 186.03 4.2815 4.128 0.9509 0.9454

m, = 0.0 (0.165,0.034)  (0.526,0.04) (0.052,0.02)  (1.26,0.27) (0.0,0.0) (0.1129,0.001)

“The coordinates of points where 6, I, and p assume maximum values are parenthetically noted.
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occur in the deforming penetrator and target regions. Compounding the difficulty is the
observation that different deformation mechanisms are active at var.ous temperatures and
strain rates, and the mechanisms themselves are temperature and tim: dependent. Another
complicating factor is the microstructural changes such as the generation/annihilation of
dislocations, development of texture, dynamic recovery and recrystallization, nucleation and
growth of microcracks and voids, and the development of shear bands, that occur during the
plastic deformation of a material. One way to account for these microstructural changes at
a macroscopic level is to use the theory of internal variables proposed by Coleman and
Gurtin.“ We*' used three such constitutive relations, namely, the Litonski-Batra (LB) flow
rule, the Bodner-Partom (BP) flow rule, and the Brown-Kim-Anand (BKA) flow rule. The
material parameters in these constitutive relations were evaluated by solving numerically an




initial-boundary-value problem corresponding to plane strain compression of a block made
of the target material and deformed at an average strain-rate of 3300 s and ensuring that
the effective stress vs. the logarithmic strain curves for the three constitutive relations are
nearly identical. With these values of material parameters, the analysis of steady state
axisymmetric deformations of the target by a hemispherical nosed rigid penetrator gave the
following results.

Figure 2 depicts the distribution of the normal stress, temperature rise 4, and the
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F16. 2 Comparison of the variation of normal stress. strain rate messure, tangential speed. and
the lemperature nse al larget particles abutting the penetraior nose surface for the three constitistave
relations. .

tangential speed on the penetrator nose surface and the second invariant I of the deviatoric
strain-rate tensor at the centroids of elements abutting the nose surface for a = 10, which
corresponds to the penetrator speed of 718 m/s. Here a = pvy’/0,, p being the mass density
of the target, g, its yield stress in a quasistatic simple compression test, and v, the speed of
the penetrator. The quantities plotted are nondimensional, obtained by scaling stresses by
d, speed by v, time by ro/v, where 1, is the radius of the penetrator, and the temperature
rise by 108.9° C. It is clear that the three models give essentially identical results; the
maximum difference between the temperature rise computed at any point on the surface
with the three flow ruies is nearly 30° C for an average temperature rise of 400° C. The
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nondimensional axial resisting force experienced by the penetrator was found to be 8.19,

8.84, and 8.26 for the LB, BP, and BKA flow rules, respectively. The values of (I,0) at the
stagnation point for the LB, BP, and BKA flow rules equalled (1.52, 3.53), (1.52, 3.80), and
(1.53, 3.67), respectively.

An integration of the balance of linear momentum along the central streamline (r
= () gives .

) _ _ do,, ..
Eav +p-s, 2'!:?& 0, (0). (1)

Figure 3 shows the contribution from the various terms for @ = 10. The three models give
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Fi0. 3 Contribution of vanious terms in the nondimensionalized Bernoulli equation along the
centrai stream line.

nearly the same value of the kinetic energy Y:av?, and the deviatoric stress s,,. The value
of the hydrostatic pressure p for the BP model is uniformly more than that for the other two
models, and each model predicts a substantial contribution from transverse gradients of the
shear stress. The value of the strength parameter for the target in Tate’s equation was
found to be 7.71, 8.46, and 7.89 for the LB, BP, and BKA models, respectively.

We* studied the effect of the elasticity of the target material and the penetrator nose
shape by modeling the target material as elastic/perfectiy plastic. The dependence of the
nondimensional peak pressure p.,, that occurs at the stagnation point, and of the
nondimensional axial resisting force F experienced by the penetrator upon « is exhibited in
Fig. 4. Here r, and r, equal, respectively, the semimajor and semiminor axes of the
ellipsoidal nose of the rigid cylindrical penetrator. For each nose shape, the consideration
of elastic effects lowers the value of p,,, by abcut 2, and of F by 1.8. Whereas p,,, depends
upon a rather strongly, the dependence of F upon a is quite w’eak/Assuming that material
points for which
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are deforming plastically and those for which the stress state lies inside the surface are
deforming elastically, one can determine the elastic/plastic boundary. Results plotted in Fig.
5 suggest that less of the material ahead of the penetrator nose tip and to the sides of the

t/eg = 8.3

4 ~.
.,/..7-.1.0 S

Distance from the nose tip
w

Fig. 5. Elastic-plastic boundary for
-3 three different nose shapes, and 2 = {0




rigid rod is deformed plastically for the ellipsoidal nosed penetrator as compared to the
other two nose shapes considered. The distance of the elastic-plastic bcundary from the
penetrator nose tip is found to be 5.4, 6.8, and 7.7, respectively, according as the penetrator
nose shape is ellipsoidal, hemispherical, or blunt. Tate* presumed that a material particle
was deforming either elastically or plastically, and based on his solenoid flow model, he
found the axial distance of the elastic-plastic boundary from the stagnation point to be 6. 71
which compares well with our computed values.

We* have used the velocity field computed in the preceding problem to develop an
engineering model of target penetration. The deforming target region is divided into two
parts, one ahead of the penetrator nose center and the other behind it. In each, the
presumed velocity field satisfies the condition of isochoric deformations, essential boundary
conditions, and the velocity compatibility condition across the interface between the two
regions. The unknown parameters in the velocity field are determined by minimizing the
error in the satisfaction of the balance of linear momentum. As shown in Fig. 6, the

NORMAL STRESS/TIELD STRESS

q A 20 2 40 50 6 2 L] 99

Fig.8 Distribution of the normal traction on the penetrator nose. —— Qne ter;n solution; -----
three terms solution; - ~ - FEM solution.

computed normal traction on the penetrator nose surface matches well with that obtained
from the finite element solution near the penetrator nose center, but the two differ at points
near the nose periphery, probably because of the differences in the values of the hydrostatic
pressure. However, the dependence of the axial resisting force F upon a in the two cases,

viz.,
F = 8575 + 0.197a, FEM solution, (3.1)
F = 8717 + 0.243a, engineering model, (3.2)

is virtually identical for 0 < a < 10.
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By using an analogy between the flow of a fluid around a cylinder and that of the
target material around the penetrator nose, we evaluated 4 and 8 in the following expression
(4) for the frictional force f, between the target and the penetrator.”’

£ = -pvPfylv, viaviev, fo=1p-ep, 4)

where n is a unit outward normal and g is the Cauchy stress tensor. Figure 7 depicts the
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Fig. 7. Distribution of the normal traction on the hemispherical nose of the penetrator
for different values of the coefficient u of friction.

distribution of the normal traction f, on the hemispherical nose surface of the penetrator
fora = 6.5, 8 = 1.5, and u = 0.0, 0.1, 0.2, 0.3, and 0.4. We note that the hydrostatic
pressure, which seems to be less sensitive to the value of p, makes a significant contribution
to f,. Thus, the value and the distribution of the normal tractions on the penetrator nose
surface change very little when u is increased from 0.0 to 0.4. Whatever little change does
occur, the general trend is that f, increases near the nose tip and decreases near the nose -
periphery with an increase in the value of u.
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IX.

APPENDIX
A copy of each of the following papers is included in the appendix.

Steady state axisymmetric deformations of a thermoviscoplastic rod penetrating a
thick thermoviscoplastic target

A steady state axisymmetric penetration problem for rigid/perfectly plastic materials
Steady state penetration of transversely isotropic rigid/perfectly plastic targets
Steady state penétration of elastic perfectly plastic targets

Steady state axisymmetric deformations of a thick elastic-thermoviscoplastic target

Effect of viscoplastic flow rules on steady state penetration of thermoviscoplastic
targets

Effect of constitutive models on steady state axisymmetric. deformations of
thermoelastic-viscoplastic targets

Histories of stress, strain-rate, temperature, and spin in a steady state deformation
of a thermoviscoplastic rod striking a hemispherical rigid cavity

An approximate analysis of steady state axisymmetric deformations of viscoplastic
targets
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Summary—The coupled nonlinear partial differential equations governing the thermomechanical
and axisymmetric deformations of a cylindrical rod penetraung into a thick target, also made of a
rigid viscoplastic material. are solved by the finite elemen: method. It is assumed that the
deformations of the target and the penetrator as seen by an observer sitvated at the stagnation
point and moving with it are independent of time. Both the rod and the target material are assumed
to exhibit strain-rate hardening and thermal softening. and the contact between the penetrator
and the target at the common interface is smooth. An effort has been made to assess the etfect of
the strain-rate hardening and thermal softening on the deformations of the target and the penetrator.
1t is found that the axial resisting force experienced by the penetrator. the shape and location of
the (rec surface of the deformed penctrator and the target penetrator interface. and normal
tractions on this common interface depend rather strongly upon the speed of the stagnation point
and hence on the speed of the striking rod. Results presented graphically include the distribution
of the velocity field. the temperature change. the hydrostatic pressure and the second-invarant of

the strain-rate tensor. .

In an attempt to help establish desirable testing regimes for determining constitutive relattons
aparopriate for penetration problems. we also find histones of the effective stress. hydrostatic
pressure. temperature and the second invariant of the strain-rate tensor experienced by four

penetrator and two target particles.

NOTATION

velocity of a rod particle
mass density
heat flux
specific internal energy
strain~rate tensor
Cauchy stress tensor
deviatoric stress tensor
hydrostatic pressure
temperature change
thermal conductivity
specific heat
yield stress in simple compression
strain-rate sensitivity parameters
thermal softening coeflicient
1 unit tangent vector
a unit normal vector
heat transfer coeflicient
grad  gradient operator

div  divergence operator

I3 second invariant of D
1. non-dimensional numbers

>3 -3l axacu-aDCTav <

1. INTRODUCTION

When a fast moving long rod strikes a very thick target, the deformations of the rod and
the target appear to be time independent to an observer situated at the stagnation point
and moving with it after the rod has penetrated into the target through a distance equal
to a few rod diameters, This steady state lasts until the stagnation point reaches close to
the other end of the target. Thus, for tlhaick targets, the duration of the steady state portion
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of the penetration process is a significant part of the total time taken to perforate through
the target. For very high striking speeds. the deformations of the target and the penetrator
can be assumed to be governed by purely hvdrodvnamic incompressible flow processes.
In this approach. the only significant material property is the ratio of mass densities of
the target and the penetrator. and the same penetration depth is predicted for all impact
velocities. Tate [1.2] and Alekseevskii [3] modified this model by incorporating the effects
of the material strengths of the projectile and the target and representing them as some
multiple of the uniaxial vield stress of the material. but the multiplying factor was not
specified. These and other limitations of the one-dimensional models have been discussed
by Wright [4]. and more recently by Wright and Frank [53]. Pidsley (6], who studied the
penetration of a copper rod into an aluminum target. found that during the steady state
portion of the penetration process these strength parameters equallea 2.4ay), and
—1(0.7)oy), for the target and the penetrator. respectively. Here gy is the Hugoniot
elastic limit. He explained that the negative value for the rod strength is due to the vield
strength of the rod being lower than that of the target.

The reader is referred to the paper by Backman and Goldsmith (7] for a review of
the open literature on ballistic penetration until 1977. It describes various physical
mechanisms involved in the penetration and perforation processes. and also discusses a
number of engincering models. Other recent review articles and books include those by
Wright and Frank [5], Anderson and Bodner [8]. Zukas et al. [9]. Blazynski [10]. and
Macauley [11]. Ravid and Bodner {12] have proposed a five-stage penetration model
applicable to two-dimensional analysis of rigid projectiles penetrating deformable targets.
Various unknowns in the assumed kinematically admissible velocity field are found
by using an upper bound theorem of plasticity modified to include dvnamic effects. The
penetration model proposed by Ravid et al. [13] also accounts for the shock effects and
plastic deformation in the component bodies. Forrestal et af. [14] have recently applied
the cavity expansion model to study the penetration of rigid projectiles into geological
matenials. :

With the main objective of providing some guidelines for selecting and improving upon
the previously used kinematically admissible fields in engineering models of penetration.
Batra and Wright [15] initiated the study of an idealized steady state penetration problem.
[t simulates the penetration of a very long (semi-infinite) rod into an infinite target when
all of the flow fields appear steady to an observer situated on the penetrator nose tip and
moving with it and the target’penetrator interface is smooth. They studied the problem of
a deformable target, assumed to be made of a rigid perfectly plastic material and a rigid
cylindrical penetrator with a hemispherical nose. Subsequently. Batra [16.17] found that
the nose shape affected significantly the resisting force experienced by the penetrator and
also studied the case when the target .material exhibited work-hardening. strain-rate
hardening and thermal softening effects. Batra and Lin [18-20]. and Lin and Batra [21]
studied the steady state axisymmetric deformations of a semi-infinite cvlindrical penetrator
striking a known semi-infinite cavity in an infinite and rigid target. and also computed the
histories of the effective stress. temperature, second invariant of the strain-rate tensor and
the plastic spin. Gobinath and Batra [22] have recently analysed the steady state
axisymmetric penetration problem in which both the target and the penetrator are made
of a rigid. perfectly plastic material. Since most penetrator and target materials exhibit
strain-rate hardening and thermal softening effects, we extend the previous work [22] to
incorporate these effects. The problem is very challenging because of the presence in it of
two g priori unknown surfaces. namely, the target penetrator interface and the free surface
of the penetrator material flowing backwards. The shapes and locations of these surfaces
are strongly influenced by the value of the strain-rate hardening exponent for the penetrator
and a little by the value of the strain-rate hardening exponent for the target. The speed
of penetration also affects noticeably the shapes of the target penetrator interface,

We note that there is no fracture or failure criterion incorporated in our work. Thus
both the penetrator and target materials are presumed to undergo unlimited plastic
deformations. It is hoped that the details of the kinematic and stress fields provided herein
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will help propose better estimates of the kinematic fields in engineering models of steady
state penetration process. Also the histories of the stress. temperature. the second invariant
of the strain-rate tensor and the plastic spin for four penetrator and two target particles
given herein should help establish desirable testing regimes for practical problems. and
help assess the efficacy of different plasticity theories for the penetration problem.

J. FORMULATION OF THE PROBLEM

We use a cylindrical coordinate system, with origin at the stagnation point and moving
with it at a uniform speed ¢, and positive =-axis pointing towards the undeformed portion
of the rod. to describe the deformations of the target und the penetrator. The equations
governing their deformations are

dive=20, {1
dive = pv, 2.0

= p{r-grad)r, (2.

—div g+ trieD) = p{v-grad)L’, (3
2D =grad v + (grad v)". - {4)

These equations are written in the Eulerian description ol motion. Equation {1) expresses
the balance of mass, Eqn (2) the balance of linear momentum, and Eqn (3) the balance
of internal energy. Here » is the velocity of a material particle. & the Cauchy stress at the
present location of a material particle. p the mass density. ¢ the heat flux. and U the
specific internal energy. A dot superimposed over a character implies its material time
derivative, and the operators grad and div signify the gradient and the divergence operators
defined in the present configuration. In writing Eqn (1) we have assumed that the
deformations of the target and the penetrator are isochoric. and in Eyn (3) all of the plustic
working rather than 90-95% of it as asserted by Farren and Tayle~ (23] is assumed to

be converted into heat.
For constitutive relations. which are characteristic of the target and the penetrator

materials, we take

o= —pl+—2 (1+bI™1~+0)D. D #0. (%)
v 3

D=0 iftris)® <iod(] — 0. (6)

s=a +pl, (7

g=—kgrad 8. 18)

U=ch. CAl

21 =t D). © 10y

In these equations. p is the hydrostatic pressure not determined by the deformation history
of a material particle because we have assumed the target and penetrator materials to be
incompressible. 1 is the unit tensor. o, the yield stress in a quasistatic simple tension or
compression test, [? the second invariant of the strain-rate tensor. b and m characterize
the strain-rate hardening of the material. ;+ describes its thermal softening. ¢ equals, the
absolute temperature of a material particle. s is the deviatoric stress tensor. A the thermal
conductivity and ¢ the specific heat. Both k and ¢ are assumed to be independent of the
temperature. From Eqns (5) and (7), we get

N (51!'5:)1:=—(%”ﬁ-h“m“—}'f}]. (1

N

~This can be viewed as a generalized von Mises vield criterion when the flow stress. given
»\by the.cight-hand side of Eqn (11, at a matenal particle depends upon its strain-rate and

=

\ 20
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the temperature change. That the flow stress decreases linearly with the temperature rise

has been observed by Bell [24], and Lindholm and Johnson [25]. The range of temperatures

studied by these investigators is not as large as that likely to occur here. We add that Tate

[26] also used a linear thermal softening law in his study of the penetration probiem.
Rewriting Eqn (5) as

g = ~[p+ 26— 0)K]1 + 22 (1 = bI™(1 = -6)D. (12)
i
~

where x and K equal. respectively. the coeflicient of thermal expansion and the bulk
modulus of the material, we see that Eqn (3) embodies implicitly thermal stresses caused
by the non-uniform temperature rise at different material particles. In Eqn (12), p is not
determined by the deformation history of a material particle and the addition of a
determinate term to it gives rise to p in Eqn (3) which is taken to be an independent
variable throughout this work.

Substitution for ¢. ¢. and U from Eqns (5), (8) and (9) into Eqns (2.2) and (3) gives the
following field equations:

—grad p + o div[(1 + bIY™(1 = 30)D', 31] = ptv-gradw (3
k divigrad 6) + 2a,/(1 = BIy™(1 — ;8)., 3 = pe(v-grad) 6. ()

The nonlinear coupled Eqns (13)and (i4). and Eqn (1) subject to the appropriate boundary
conditions are to be solved for the fields of the velocity v. pressure p and temperature #
in the deforming target and penetrator regions. Even though governing equations for the
target and penetrator regions are the same, the values of material parameters o,. b. m. ;.
p. k and ¢ need not have the same values for the target and penetrator materials. In order
to solve Egns (1), (13) and (14). we need to know the domains over which they apply.
This in turn requires a knowledge of the shapes and locations of the target penetrator
interface T, and the free surface [ of the deformed penetrator. Both these surfaces are
unknown a priori. For the time being, we presume that T and I are known. Subsequently,
we discuss how to find these surfaces.

It is convenient to introduce non-dimensional variables. indicated below by ua super-
imposed bar, as follows:

d=aiprl,  p=poprl, a=pele,  Oy=tlc
Fmwjir, F=rr, i=zr,  T=60,
Fml,  B=klperyy).  b=be,r,,  h=hpcr, i1135)

We note that v, is the same for the target and the penetrator. but the values of other
variables need not be the same. When non-dimensionalizing a quantity for the target
{penetrator), the value of the material parameter for the target (penctrator) is used. An
advantage of the non-dimensionalization (15) is that the governing equations for the
penetrator and the target look alike. In Eqn (15). r, is the radius of the undeformed
cylindrical penetrator. the pair (r. 2) denotes the cylindrical coordinates of a point. 8, is
the reference temperature, h is the heat transfer coeflicient between the penetrator material
and air. and the non-dimensional numbxr x gives the magnitude of the inertia forces relative
to the flow stress of the material. Rewriting Eqns (1), {13) and (14) in terms of
non-dimensional variables. dropping the superimposed bars. and denoting the gradient
and divergence operators in non-dimensional coordinates by grad and div. we arrive at
the foliowing set of equations:

dive=0, (16)
~grad p~div{(l + b)™(1 = =)D’ 3 Ix] = (v-grad)v. (17)
Bdivigrad 8) + 2I(1 + bI)™(1 = ;8).(y, 32) = (v-grad)¥. s
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For the boundary conditions. we take

t-{on)=0 onl, (19.1)
n-a,na&n-apn onTl, {19.2)
Py

ven=0 onTl,, {19.3)

8, = (65,8456, on [, (9.4

i co

(pﬂ '-—) =(pB t—) on I, (19.5
‘n/, én/y

en=0 on [. (19.6)

ven=0 on I, (19.7)
co

~B = -0, on I, (19.8)
cn

where # is a unit outward normal to the surface. ¢ is a unit tangent to the surface. o, is
the air temperature and subscripts p and t signify the quantity for the penetrator and the
target. respectively. We note that boundary conditions (19.3) and (19.7) which signify that
I, and I are streamlines are not required for a complete specification of the problem
provided that these surfaces are known. Since these surfaces are not known. we presume
their shapes. solve the problem without using {19.2) and (19.7). and then use these conditions
to ensure that the presumed [ and [ are correct. The procedure for adjusting I and I
if (19.2)and (19.7)are not satisfied within the prescribed tolerance is described in Section 4.
At target particles far away from I, we take

jv+e —0 as (rs =23 {20.1H
lam — O as S — L. (20.2)
légl
—| =0 as == X, ' 120.3)
cn|

That is, target particles at a large distance from I, appear to be moving at a uniform speed
to an observer situated at the stagnation point. Equations (20.2) and (20.3) state that the
fields of surface tractions and heat flux vanish at target particles behind the stagnation
point and far {rom it. On the penetrator cross-section far from the stagnation point.

v+ir,—le =0 as - = ¢, (21.0)
10=8,=0 as :— x. 21.2)

and on the deformed penetrator material at the outlet.

toml =0 as(rf =) g, (21.3)
el . .

E-;—;—o() At =) - 2, t21.4)
énl .

Equations (21.1) and 121.2) state that the ¢nd of the penetrator far from the stagnation
point is moving in the negative z-direction with 4 uniform speed of tr, — 1) relative to the
observer at the stagnation point and 15 at & uniform temperature ¢,. Equations (21.3) and
(21.4) state that the surface of the delormed penetrator near the outlet is traction free and

‘there is no heat exchange between them and the material on the other side of the outlet

surface. [deaily, one should specify the rate of decay of quantities in Eqns (20.1) through
(20.3). and (21.1) through (21.4). However. at this time. there is little hope of proving any
existence or uniqueness theorem for the stated problem and we. therefore. gloss over the
issue. Herein we assume that the problem defined by Eqns (16)-121) has a solution and
seek an approximation to that solution by the finite element method.

279
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3. FINITE ELEMENT FORMULATION OF THE PROBLEM

Unless one uses infinite elements. a numerical solution of the problem necessitates that
we consider a finite region and know the shapes of the free surface [ and the
target penetrator interface I, We presume I and I, and study deformations of the
penetrator over the region ABGHIJA shown in Fig. 1 and of the target on the region
BCDEFGB also shown in Fig. 1. The figure depicts a finite element discretization of the
domain; the mesh is very fine in the darker regions. We note that the finite domains for
the penetrator and the target considered here are larger than the penetrator region studied
by Batra and Lin [18~19] and the target regions examined by Batra [15-17].

The boundary conditions {19.1). {19.3)and {19.4) apply on the target. penetrator interface
BG and (19.6) and (19.8) on the penetrator free surface JIH. We recall that conditions
(19.2) and (19.7) are used to verifv the accuracy of the assumed surfaces I; and I;. On the
axis of symmetry ABC. we impose

6,,=0. v, =0, 56-’ =0. (22
cr
The boundary conditions (20) and (21) at the far surface of the penetrator and the target
are replaced by the following conditions on the bounding surfaces of the finite region being
analysed:
r,=1, v, =0. 6=, on the bounding surfaces CD and DEF. (23.1)

g, =0, v, =0, C—f—)=0 on FG, (23.2)

hi.. o B

Fi1G. |. The finite region studied and its discretization.
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ct -

r,=r,, r, =0, —=0 on the outlet surfuce GH. 235
c:

ve=m —{r,=~1). r, =0, 0=4, on the surface AJ. {23.4)

The value of ¢, is computed so as to satisfv the balance of mass.
Referring the reader to one of the books [27-29] for details of deriving a weak formulation
of the problem. we simply note that a weak formulation of the problem defined on the

target region R, by Eqns (16)~(18). and boundary conditions (19.1). (22). (23.1) and ¢23.2)
is that equations
sdiveydV =0 (24.1)
v Ry ’
f n(div@)dV - f ul. 0. 2)[D: (grad ) + (grad ¢)7] d}’
v R Ry
==J [(v-grad)v]- dV - ’ {n-en)¢-n)dS 124.2)
Ry o
!‘ ¥
B. ' (grad 8-grad q)dl’+f [(v-grad)d]n dV=j nQgl. 6. 2x)dv - “ /}ql_—‘dS {24.3)
v R, R ' or, n
where
ul. 8. %) = (1 +bI™(1 —8) (2.3 I2), (25.1)
QI 8. %)= 21(1 + bD)™(1 —;0Y, 3. (25.2)

hold for arbitrary smooth functions 4. ¢ and 5 defined on R, such that ¢ =48 on CD and
DEF. ¢,=0 on BC and FG, and n=0 on CD and DEF. If at a boundarv point a
component of the trial solution is prescribed. the corresponding component of the test
function is taken to vanish there. In Eqn (24.2) A: B = tr(AB") for linear transformations
A4 and B. A similar set of equations can be derived for the penetrator region. Note that
for the penetrator region the second term on the right-hand side of Egn (24.3) will be

replaced by

- f ﬂrrﬁdS+J~ h@—6,)nds. (25.3)
Jr; cn Ce

Because of the boundary condition (19.4). we use the following iterative scheme to sohe
the problem. We estimate 0 in R, and R,, solve equations (24.1). 124.2) and a similar set
of equations for the penetrator for the fields of v and p in R, and R,, (cf. Section 4.1 below).
use these values of v in Eqn (24.3) and a similar equation for the penetrator to solve these
for 8 in R,u R,. Thus the boundary conditions (19.4) and (19.5) requiring the continuity
of the temperature and the normal component of the heat flux across the target. penetrator
interface T, are satisfied. The computed value of 8 is compared with the estimated value and
the aforementioned process is repeated until the difference between the two at every node
point is less than the prescribed tolerance. The nonlinear equations (24.1) and (24.2) ure
solved iteratively for p and v. At the ith iteration. equations

~

| audiv o av=o. (26.1)
v R ’
J- pitdiv $)dV ~ [' wli=' 6, 2)! D': [grad ¢ + (grad ¢)7]} dV’
R v Ry
) ~
=f [(v""-grad)v‘]~¢dV—J (n-a' " 'n)(p-ndS 126.2)
R, ri
are solved for v' and p'. The iterative process is stopped when. at each nodal point.
=y geliv~ty] 126.3)
24




—

3 R. C. Batka and T Gosinath

where jvi{® = ¢} + . and ¢ is a preassigned small number. Since Eqn (26.2) is lineur in p,
its values are not included in the convergence criterion (26.3).

4 COMMENTS ON COMPUTATIONAL ASPECTS OF THE PROBLEM

Batra [17] and Batra and Lin [19] used 6-noded triangular elements to analyse steady
state thermomechanical deformations of the target and the penetrator. respectively, while
assuming that the other body was rigid. Thus. they approximated the velocity and pressure
fields by piecewise quadratic and piecewise linear fields over R, and R,. Each of these fields
is continuous across inter-element boundaries. The convergence rate of the iterative scheme
used to solve Eqns (24.1) and (24.2) deteriorated significantly once the value of x, or x,
exceeded 5. We note that for higher values of x, and %,. the convective part of the acceleration
plays a dominant role and the finite element mesh required to obtain a satisfactory solution
of Eqns (24) by the Galerkin approximation [29] needs to be very fine. This difficulty was
overcome by adding an artificial viscosity to the diffusive terms in Eqns (24) and using
4-noded quadrilateral elements in which the pressure field is taken to be constant and the
velocity field bilinear. The value of the artificial viscosity v to be added in each clement
depends upon the values of v and u. defined by Eqn (25.1), at the centroid of the element
and the dimensions (h,. h,) of the element. Here h, and h, equal. respectively. the largest
distances in the r and - directions between the midpoints of the sides of a quadrilateral.
Following Brooks and Hughes [30]. we take

e R (27.0
v, = hlcothv, — 1 v,)2, 27.2)
v, = h(cothv, — 1 v,) 2, . (27.3)
vy = esh,/utle 6, 1), vy = 0Sh, 'u(If, 6°. 2), (27.4)

when solving Eqn (24.2), and
v, =vih, B, vy =Ush,/B (27.5)

when solving Eqn (24.3). In these equations. the superscript ¢ signifies that the quantity
is evaluated at the centroid of an element. Brooks and Hughes [30] have shown that
adding artificial viscosity is equivalent to using the Petrov-Galerkin approximation of Eqn
(24).

4.1 Solution algorithm

Assume the shapes and locations of the target/penetrator interface I, and the free surface
I} of the deformed penetrator. Estimate the temperature field 8 over the regions R, and
R, occupied by the penetrator and the target. Solve Eqns (24.1) and (24.2) for (v. p) on
R, and a similar set of equations on R, with the boundary condition (19.3). Thus ¢-n=0
on I and the contribution from the surface integral term on the right-hand side of Egn
(24.2) vanishes. Equations (19.2) and (19.7) are used to ascertain the accuracy of I and
I;. Emphasis is placed on finding [ first. and once I, has been determined. T is found
always ensuring that [ is still reasonably correct and if necessary, [ is adjusted. During
the adjustment of I, nodes on it are mosved 1n a direction perpendicular to it by an amount.
proportional to (f} — f7) where r} and /7 equal. respectively. the normal force on the
penetrator and target particles abutting I, A check is made to ensure that the elements
adjoining I, are not severely distorted after the nodes on I have been shifted. The algorithm
for modifying [T, if necessary. is given below in Section 4.2.

After the mechaniczl problem has been satisfactorily solved. the computed velocity field
is used to solve the thermal problem for the combined domain R, U R,. Thus the boundary
conditions {19.4) and (19.5) are trivially satisfied. The second term in Eqn (25.3) results
in the satisfaction of the boundary condition (19.8). The computed values of 8 are compared
with the estimated values and. if necessary. the solution process is repeated until the
prespecified convergence criteria have been met.
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4.2 Adjustment of the free surface

The algorithm used to adjust the free surface I is the same as that given by Gobinath
and Batra [22] and is included herein for compieteness. Referring to Fig. 2. let point Q
on I be downstream from P on I;. Assume that the computed velocity v, is tangent to
I at P and v, does not satisfy vo-n =0. In order to find the new location of point Q. we
draw a circular arc that passes through points P and Q and is tangent to v, at P. Let C
be the center of this circular arc. Point Q is moved along CQ to Q* such that P and Q*
lie on a circular arc with v, and v, being tangent to the circle at P and Q*. Points
downstream from Q are moved to an intermediate location before this rule is applied to
them. Let R be a point neighboring Q and downstream from it. R is moved to R, such
that the vector R, Q* equals the vector RQ. The final location R* of R, is then found in
the same way as Q* was determined and by assuming that the velocity of R, is v,. Since
point J is on I, the algorithm can be applied starting from J.

4.3 Mesh regeneration

After the position of I'; has been determined. the finite element mesh or R, is regenerated
by solving on it the Poisson equation

V¢ = Plr, -

under the essential boundary conditions # =r and ¢ = = at nodes on the boundary ¢R,,.
Here P is the control function [31-34] that helps generate an aporopriately graded mesh.
The points of intersection of the equipotential curves through nodes on the boundary define
the new locations of interior nodes.

,‘;’ b
| |

> 5
c P~

FiG. 2. Mlustration of the aigorithm to adjust ;.
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5. DISCUSSION OF RESULTS
t

Except when we study the effect of varying the valie of a material parameter. we assign
the foliowing values to different parameters for the penetrator and target materials:

P, =p,=7800kgm’.  ry=10mm,
0o, = 350 MPa. G0, = 114.3 MPa,
m,=0025, m =0.025,
b,=10000s, b, =10000s.
7o =0.000555;°C, 1 =0.000772,~C.
c,=473Jkg™'°C™!, ¢ =395JKg''C"\,
k,=48 Wm~™1°C™', k=111Wm™'*C"!,
h=20Wm~3°C~!,  §,=0.

We recall that subscripts p and t signify the quantity for the penetrator and the target,
respectively. For an assigned value of t,, the value of v, is estimated from the relation [1]

He, = D+ Y= (R + Dlp/p,) (28)

where Y, and R, represent strength parameters for the penetrator and target, respectively.
Pidsley [6], for a copper penetrator and an aluminum target, estimated these parameters
to equal (—0.7)(ay), and 2.4(0y),. respectively, where o, is the Hugoniot elastic limit. {n
his 1967 paper, Tate [1] found R, =3.5(gy), and in a recent paper [25] he gave

Y, = 1.70,,,

(29)
R‘ = Uol[z_f} -+ ln‘0.57£l,‘}am}],

where E, is Young's modulus for the target matérial. Batra and Chen [36] used a

semianalytical method to analyse the steady state axisymmetric deformations of a

viscoplastic target being penetrated by a rigid hcm:sphencal nosed penetrator and found

that

R, =9.430,,. :

In terms of dimensional variables. we need to know (R — Y, ) rather than the values of R,
and Y, to find v, from Eqn (28).

In all of the results presented below the solution for the velocity and temperature [ields
was assumed to have converged when, at each nodal point, the value of these quaantities
during two successive iterations differed by no more than 5%. The free surface was taken
to have converged wh=n at each node point on it. ;v-a} was less than 0.02. The iterative
process to compute the target.penetrator interface was stopped when the values of the
normal tractions f¥ and /7, at each node point on T; differed from their mean values by
less than 5%. We discuss below results for different speeds of the penetrator. and for
different values of the strain-rate hardening exponent m and the coefficient of thermal
softening 1. :

5.1 Results for v,= 500 m/s

Figure 3 depicts the computed velocity field in the penetrator and target regions for
v, = 500 m/s. The penetrator speed. as computed from Eqn (28), equals 104! m s. The plots
clearly show that the velocity at points on the free surface and the target. penetrator interface
is along the tangent to these surfaces. In order to show this effect clearly. the velocity {leld
in only a part of the deforming region is shown. The computed velocity field estabiishes
the validity of the iterative technique outlined above to find the shapes of the free surface
and the target/penetrator interface. A least squares fit to the bottom surface of the
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target/penetrator interface [ can be represented by the equation
r? (z —0.874)°
+ =1
1.861° 0.8742

Itis interesting to note that Tate {37] found the equation of the bottom surface of T, to be

(30)

L Gt LY 31)
4 a° a-

A possible reason for the difference in the value of the coefficient for the first term is the
lower value of v, considered here.

If the penetrator speed is less than the limiting velocity and there is no perforation of
the target. Eqn (30) will give approximately the shape of the bottom surface of the cylindrical
cavity in the target. We note that the computed shape of I'; does not match well with the
hemispherical cavity considered by Batra and Lin [19] in their study of the deformations
of a thermoviscoplastic rod striking a rigid cavity. The thickness 0.38r, of the outlet region
computed by Batra and Lin [19] for z, = 5.6 is comparable to 0.42r, found herein. At the
penetrator and target particles that lie to the rear of the bottom-most point of the free

Sot

-850
I
- 78
€ / .
2 |
]
5 ~100k- ;
i
S -129— .
» |
E
o
< ~180;
© \
9 3
5 i
-?, ~173 : - :
& e} .29 87 86 14 143 171 200
10

o7

03

02

(o]¢]
[eXe) 02 [°X-] o7 o9 12 14 186 19

R coordinate
Fi1G. 4. Contours of the hydrostatic pressure in the penetrator and target regions for ¢, = 00 m s.
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Steady state axisymmetric deformations 13

surface, the flow quickly becomes essentially parallel to the axis of the penetrator. Target
particles that lie ahead of the penctrator/target interface and within one penetrator radius
from it have a noticeable radial component of velocity. The velocity field for other values
of v, was found to be similar to that shown in Fig. 3.

Figure 4 shows contours of the hydrostatic pressure in the penetrator and target regions.
Recalling that the non-dimensionalization is with respect to pvZ, and v, = 500 m/s, these
values need to be multiplied by 5.6 and 17.1 for the penetrator and target, respectively,

|1.82
l'HW l Strain-rates on target side  Scale
} L1 AT [} | t

1l g = " ; '
x i “ -

FiG. 5. Distribution of the strain-rate invariant [ in the deforming penetrator and target regions
for v, = 500 m/s.
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FI1G. 6. Variation of 2nd invariant / of the strain-rate tensor along three arbitrary lines LM, PQ,
and PS perpendicular to T (v, = 500 m/s).

to get values of p as a multiple of corresponding ¢,. The maximum values of the
non-dimensional hydrostatic pressure were found to be 0.8975 and 1.017 for the penetrator
and the target, respectively. These equal 5.03 o4, and 17.390,,, respectively. When the
penetrator and the target materials are modeled as rigid/perfectly plastic, Gobinath and
Batra [38] found for v, = 500 m/s, the peak pressures in the penetrator and target to be
5.060,, and 15.680¢, near the stagnation point. It seems that the consideration of strain-rate
hardening and thermal softening effects has virtually no effect on the value of the peak
hydrostatic pressure in the penetrator but increases its value in the target region. We note
that for the rigid ellipsoidal nosed penetrator (r,/r, =2.0) and rigid/thermoviscoplastic
target, Batra [16] computed the maximum value of p to be 120y, for «, = 5.0 and for the
thermoviscoplastic rod upset at the bottom of a rigid hemispherical cavity, Batra and Lin
[19] found p,, to be 30, for &, = 5.0. Pidsley [6] who studied the penetration of a copper
rod into a steel target by using the HELP code, computed p,,,, to be 5.53a,, and 4.33a,,
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Steady state axisymmetric deformations 15

for #, = 7.84 and = 1.92, respectively, during the steady state portion of the penetration
process.

The distribution of I in the deforming penetrator and target regions is shown in Fig. 5.
Note that the scales in the two regions are different but the values of [ in each case are
to be multiplied by v,/r, to get the dimensional values of I. Thus peak strain-rates of the
order of 10%/s occur in the penetrator and the target. As for the thermoviscoplastic target
striking a rigid hemispherical cavity [19] significant deformations of the penetrator occur
within the hemispherical region of radius nearly 1.0 and centered at the bottom-most point
of the free surface. Note that the values of I near the stagnation point are quite high both

Temperatures on penetrator

K
L1
LT
8%
/|

Temperatures on target side \ S \§§

FiG. 7. Distribution of the temperature rise in the deforming penetrator and target regions
(v, = 500 m/s).
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P ~Hydrostatic pressure

V = Tangential velocity

T ~Temperature

I —Second invariont of strain-rate tensor

4 4 Solid line (penetrator) Dashed-line (target)
T
31 3
| j
i *
V; I —-—\
|
j .Y
<
2

Terms

Arclength

FiG. 8. Distribution of the hydrostatic pressure, tangential velocity, 2nd invariant { of the strain-rate
tensor D, and the temperature rise on the target/penetrator interface (v, = 500 m/s).

in the target and penetrator regions. Whereas peak values of I in the deforming penetrator
region occur at points near the free surface where the flow is reversing, those in the target
occur at points adjoining the common interface I';. Peak values of I in the penetrator and
target equal 5.25 at the point (1.135, 1.01), 3.75 at the point (1.106, 0.17), respectively. In
dimensional units these equal, respectively, 0.2625 x 10°/s and 0.1875 x 10%/s.

In order to examine whether or not sharp gradients of I occur across the target/penetrator
interface I, we have plotted in Fig. 6 the variation of [ along lines LM, PQ and PS which
are arbitrarily selected and shown in the figure. The distribution of I along these three
lines exhibits similar behavior in that the values of I are discontinuous across I and the
value of I at the target particle abutting I; is higher than that for the penetrator particle
occupying the same spatial position. The maximum value of I within the deforming target
region occurs at a point slightly away from I. For points on line LM, I, for the target
is higher than that for the penetrator particles, but the converse holds for points on lines
PQ and PS. Since the tangential velocity of target and penetrator particles abutting I are
nearly the same, for normal tractions to be continuous across I, normal derivatives of »
on I, must be discontinuous if target and penetrator particles are made of different materials.
This provides a justification for the jump in the value of I as one crosses I;. Recalling that
the hydrostatic pressure contributes significantly to the normal tractions, it is not necessary
that I be sharply discontinuous across [ for the normal tractions on the two sides of [;
to match with each other.

Figure 7 depicts the temperature distribution in the deforming penetrator and target
regions. Note that the scales for the two plots are different. As for the values of the
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strain-rate invariant [, high temperatures occur in the deforming penetrator region near
the stagnation point and points adjoining the free surface. Because of the high speed of
material particles. a considerable amount of heat is transferred by convection. For this
reason, the temperature decreases rather slowly as one moves downstream along the
target. penetrator interface or along any other streamline such as the free surface of the
penetrator. The maximum temperature rise in the penetrator and target is found to be
232°C at the point (0.17.0.66) and 191°C at the point (0.479, 0.05), respectively. This is
considerably less than that found when either the penetrator {504°C) or the target (605 C)
is regarded as rigid for nearly the same value of r,. One possible explanation for this is
that the external work done in the present problem is used to deform both the penetrator
and the target, whereas in the previous studies referred to, all of the external work was
used to deform cither the penetrator or the target. Along the axial line the temperature
decreases slowly within the penetrator but quite rapidly in the target.

Figure 8 shows the distribution of the non-dimensional hydrostatic pressure, second
invariant I of the strain-rate tensor, tangential velocity and the temperature rise at points
on the target’penetrator interface [;. The temperature values are to be multiplied by 52.8 C
to get their dimensional counterparts. It is clear that on [, the maximum value of the
temperature occurs at a point slightly away from the stagnation point. Even though the
values of the non-dimensional and dimensional pressures on the penetrator and target
sides of the common interface I are nearly the same, their values as a multiple of the flow
stress are not because of the difference in the values of the flow stresses for the penetrator
and target regions. The slight difference in the value of the tangential velocities of the
target and penetrator particles situated at the same spatial position on I, reveals that there
is some slippage between the two. This is consistent with our assumptions of only the
normal velocity and normal tractions being continuous across [,

On the axial line, uniaxial strain conditions prevail. approximately. Thus the magnitude
of the deviatoric stress s,, should equal 23 the effective stress, which equals | '3 times the
right-hand side of Eqn (11). As shown in Fig. 9(a). the difference between s,, and 2.3, is
less than <% on the penetrator side and less than 0.3% on the target side. Also depicted
in the figwi= are contributions of various terms in Eqn (32), obtained by integrating the
equation of motion along the central streamline r =0

i

T ﬁvzd.-p—-s,,-—z'[ L—gifd:=-—a,,(0}. (32)
o Cr
This equatica holds both for the penetrator and the target. and - is measured from the
stagnation point. Even though ¢,,(0) for the target and the penetrator should equal cach
other, the two do not match in our plot because the solution was taken to have converged
when the normal tractions on the penetrator and target sides differed from the mean normal
tractions by, at most, 5%. Note that the integral term in Eqn (32) contributes significantly
to the total as we move away frorn the stagnation point. This was pointed out by Wright
[4] and has also been verified by Pidsley [6]. We add that while computing a,, from the
computed velocity and temperature fields, contributions from the artificial viscosity were
not considered. Figure 9(b) depicts the variation of the second invariant [ of the strain-rate
tensor and the temperature rise 8 on the axial line. The temperature on the target side
falls off rather rapidly as one moves away from the stagnation point. However. within the
penetrator, the maximum value of the temperature/rise occurs at a point away from the
stagnation point. Even though the maximum value/of / on the target axial line occurs near
the stagnation point and is much higher than that on the penetrator axial line. #,,, lor
the penetrator particles is larger than 8,,,, for the target. This is due to the differences in ™~
the value of their heat capacities and flow stresses. A possible explanation for the
discontinuity in the values of [ as one crosses the target, pengtrator interface is the same
as that given above for lines LM, PQ and PS.

/

5.2 Ej]'éct of the speed of penetration
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Figure 10 depicts the distribution of the mean normal tractions Onthe-tasget penetrator -~
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F1G. 9(a). Contributions of various terms in the Bernoulli equation along the central streamline
(v, = 500 m/s).

(b)

44 ‘ 0.4 4
|
: y r
| [
| !
; |
3
Target /' Penetrator I
{1
] / q
! / ! . Target f ' Penetrator
Lo f 1o o2 |
: / E j
i / @
, ,|
// |
,/ “ l
/ |
/ |
/‘ /
/ [
// il
I
i A
' _..--/'(!( | s
0.0 = —
=3 -2 F1 o} 1 2 =% =2 =1 Q ] 2

F1G. 9(b). Distribution of the 2nd invariant [ of the strain—rate tensor D and the temperature rise
along the central streamline (v, = 500 m/s).

interface for v, =450 m/s, 500 m/s and 550 m/s. The values of («,, 2,) corresponding to
these values of v, equal (4.51, 13.82), (5.57, 17.06), and (6.74, 20.65), respectively. The values
of the penetrator speed for these values of v, equal 850 m/s, 1041 m/s and 1234 m/s,
respectively. These plots elucidate that the normal tractions on the common interface
increase sharply with the penetration speed. The normal tractions diminish to nearly zero
values for non-dimensional values of arc length on I exceeding 2.0. We note that these
curves are similar to that given by Gobinath and Batra [22] who assumed the penetrator
and target materials to be rigid/perfectly plastic and solved the problem for v, = 400 m/s.
The axial resisting force experienced by the penetrator for the three values of v, considered
herein equalled 8.91, 11.52, and 14.51, respectively. These numbers need to be multiplied
by nr§o,, to get the corresponding dimensional values of the axial force acting on the
penetrator. We have plotted the shapes of the free surface and the target/penetrator interface
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21 Curve A a, = 4.51, o= 13.82
b Curve B a;=5.57, q,=17.06
I Curve C ap=6.74, a,= 20.65
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F1G. 10. Distribution of the mean normal tractions on the target/penetrator interface for three
different speeds of penetration.
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FiG. 10(a). Shapes of the free surface for three F1G. 10(b). Shapes of the target/penetrator interface
different speeds of penetration. for three different speeds of penetration.

for the three values of v, stated above in Figs 10(a) and 10(b), respectively. In order to
elucidate the dependence of the location of the stagnation point upon the speeds of
penetration, the ordinate is measured from the bottom surface (CD in Fig. 1) of the target
region considered. The stagnation point moves away from the free surface of the deformed
penetrator as the speed of penetration is increased. Also with the increase in the speed
of penetration, the distance between the free surface of the undeformed penetrator and
the deformed penetrator particles moving rearwards increases. The shape of the target/
penetrator interface also depends strongly upon the penetration speed.

5.3 Effect of the strain-rate hardening exponent m

Figures 11, 11(a) and 11(b) depict the distribution of the mean normal tractions on the
target/penetrator interface [, its shape and the shape of the free surface I for three different
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Fic. 11. Distribution of the mean normal tractions on the target/penetrator interface for three
different strain-rate hardening exponents.
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F1G. 11(a). Shapes of target/penetrator interface for three different strain-rate hardening exponents.
F1G. 11(b). Shapes of free surface {or three different strain-rate hardening exponents.
FI1G. 11(c). Comparison of shapes of lree-surface {or three different combinations of material model.

FiG. 11(d). Comparison of shapes of target, penetrator interface for three different combinations of
material model.
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combinations of the values of the strain-rate hardening exponent m and ¢, = 500 m s.
When the value of m for the penetrator is kept fixed at 0.025 and the value of m for the
target is changed from 0.025 to 0.005, there is hardly any change in the shape of the free
surface. However. the shape of I and the distribution of normal tractions on it do change
scme, though not significantly, when m, is reduced from 0.025 to 0.005. In Fig. 11(b), the
free surfaces are plotted to a large scale so as to magnify differences, if any. in their shapes
for different values of m. The change in the value of m, from 0.025 to 0.005 while m, is
kept fixed at 0.025 does influence significantly the shape of the free surface and to a
somewhat less extent. the shape of the target.penetrator interface and the distribution of
normal tractions on it. The stagna:ion point moves away a little bit from the free surface
when the value of m is changed from 0.025 to 0.005 either for the penetrator or the target.
The peak values of 6, /. and p and where they occur are influenced by the values of m,
and m, as evidenced by the information provided in Table 1.

When either the penetrator or the target is modeled as rigid /perfectly plastic material
and the other body as viscoplastic with m =0.025, the shapes of the free surfaces and the
corresponding intermediate surfaces are shown in Figs li{c} and 11(d). respectively. The
vertical scale in these figures represents the distance measured from the bottom-most point
of the target region studied so that vertical displacements, if any, of the stagnation point
could be determined. When either one of the two materials is modeled as rigid perfectly
plastic. the stagnation point moves downward. the displacement for m, = 0 being twice of
that for m, = 0. The shapes of the free surface of the deformed penetrator remain unaltered
when cither m, is 0.025 or 0.0 and does not chunge noticeably when m, is decreased from
0.025 to 0.0.

5.4 Effect of the thermal-softening coefficient ;

When the value of the thermal softening coefficient 7 for cither the target or the penetrator
was doubled keeping that lor the other part unchanged. the distributions of the mean
normal tractions on the target,penetrator interface I, its shape and the shape of the free
surface [, were essentially unaltered. Therefore, these plots are not inciuded in the paper.
The values of @,,,,. Pmass Imsx iN the penetrator and target regions do not change much
when v is doubled either for the target or the penetrator. We note that a similar effect was
observed by Batra [17] who analvsed the steady state penetration of a rigid cvlindrical
rod into a thick thermoviscoplastic target.

5.5 Effect of different ratios of mass densities

Results presented in this section are {~r the case when the penetrator and target materials
are modeled as rigid/rerfectly plastic. Figure 12 shows the shapes of the target penetrator
interface I and the distribution of normal tractions on it for p, p, = 1.25. 1.0. and 0.75.
The ordinate in Fig. 12(a) is the vertical distance from the bottom surface CD of the target
region considered and the scales along the horizontal and vertical axes are quite different.
The expanded scale along the horizontal axis is meant to magnify the small differences in
the shapes of I, when p,/p, is varied. We note that in these computations p, was kept fixed.
The plots of normal tractions on I, reveal that the largest normal tractions occur for
pv pp = 1.25 and least for p,/p, = 0.75 and the change seems to depend continuously upon
p./p,. Thus, for the same penetrator material. the pressure at the stagnation point will
increase with an increase in the mass density of the target. Similarly for a fixed target
material. higher density penetrators would result in smaller values of the pressure at the
stagnation point.

6. HISTORIES OF THE STRESS. STRAIN-RATE [INVARIANT.
HYDROSTATIC PRESSURE AND THE SPIN TENSOR

One of the unresolved problems in penetration mechanics is the selection for the material
of the penetrator and the target constitutive relations that adequately mode! their response
over the range of deformations anticipated to occur in a problem. In an attempt to help
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F1G. 12(a). Shapes of the target penetrator interface for  FiG. 12(b). Distnbution of the mean normal tractions
three different values of p, p,. on the target penetrator interface for three
different values of p, p,,.

determine which one of the many recentiv proposed theories (e.g. Refs [39-42]) of large
deformation elastoplasticity is most appropriate for a penetration problem. we give below
histories of the effective stress, second invariant of the strain-rate tensor. the temperature
and the spin for a few typical target and penetrator particles. These time histeries should
also help establish desirable testing regimes for practica! problems.

The first step in finding histories of a field variable at a material particle is to find the
streamline for that particle. Streamlines originating from four locations. viz. A10.1. 5.88),
B(0.15. 5.88), C(0.90, 5.88), and D(0.95, 5.88) within the deforming penetrator region and
two locations, i.e. E (0.10, — 3.12) and F(0.15. — 3.12) within the deforming target region
are plotted in Fig. 13. That the four streamlines originating from points C. D. E. and F
do not intersect or merge together is clear from the enlarged view of the pertion enclosed
in the box. In the following discussion. we identify the histories of the material particle
that once occupied. say. the place A as histories of the variable for the material particle A.

6.1 Histories of field variabies for penetrator particles

Figure 14 depicts the location of the four particles at different times. The time is reckoned
from the instant when particles A, B. C. and D occupied the places (0.10. 5.88), (0.15. 5.88),
(0.90, 5.88), and (0.95. 5.88), respectively. The radial and axial components of the velocity
at different times for these four particles are plotted in Fig. 15. As particles A and B
approach the region surrounding the stagnation point at t = 5, their velocities in the radial
direction increase sharply and those in the axial direction decrease to zero. Matenal
particles C and D adjoining the free surface of the penetrator reach near the bottom-most
point on the free surface at time ¢ = 2.8. The radial velocity of these particles which was
initially zero increases sharply. and becomes maximum when they are close to the
bottom-most point on the free surface. It is followed by a rapid decrease to a small value
which gradually becomes zero. Recalling that the velocities plotted are those relative to
the velocity of the stagnation point. the sharp jump in the value of v, for these particles
corresponds to the reversal in their direction of motion after they move past the bottom
of the free surface. In Fig. 16 we have plotted the histories of the non-dimensional
temperature and the second invariant [ of the strain-rate tensor. For points A and B
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B/E
7 E
F./
F1G. 13. Streamlines emanating from four points of the penetrator region and two points of the
target region,

adjoining the axial lihe, peak values of the temperature rise are higher than those for points
C and D, but the peak values of I for points C and D are higher than those for points A
and B. Peak values of the second invariant I of the strain-rate tensor at points A and B
are much lower than those for points C and D. Peak values of 8 and I at points A and B
occur when they are near the stagnation point. As these points move far away from the
stagnation point, the value of I decreases rapidly but that of 8 decreases slowly due to the
convective transport of heat. For points C and D near the free surface, peak values of 6
and [/ occur simultaneously soon after they cross over to the right of their bottom-most
positions. Note that the values of [ and 6 increase at points C and D rapidly as they
approach the bottom-most point on the [ree surface. Whereas the values of [ drop quite
rapidly, their temperature is still high because of the convective transport of heat. Figure
17 shows histories of the effective stress S,, defined as the right-hand side of Eqn (11), and
the hydrostatic pressure at these four particles. For particles C and D the hydrostatic
pressure is negligibly small. This is to be expected since these particles always stay close
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F1G. 14. The variation of r-, z-coordinate of four penetrator particles at different times.
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F1G. 15. Histories of the radial and axial components of velocity for four penetrator particles.

to the free surface of the penetrator. Note that the peak values of S, at all four points
considered is nearly the same. Since the material particles are undergoing plastic
deformation, the effective stress must satisfy the yield condition (11). The variation in the
effective stress at these points is due to the change in the values of I and 8. At points C
and D, the peak values of I, 8, and S, occur at the same time thereby implying that the
strain-rate hardening effects dominate over the thermal softening effects. For ¢t > 5 when
the values of I have become essentially zero, the effective stress drops because of the
softening caused by the heating of the material points. For material particles A and B,
whereas I,,, occurs at ¢ ~ 2.8, the maximum value of S, occurs at ¢t~ 2.2. Recalling the
history of the temperature plotted in Fig. 16, we see that 8_,, occurs at t ~4.5 and the
values of 6 at ¢t ~ 2.8 are higher than those at t~2.2. The higher value of the thermal
softening effect at ¢ ~ 2.8 reduces the value of S, as compared to that at ¢ ~2.2.
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F1G. 16. Histories of the temperature rise and 2nd invariant [ of the strain-rate tensor for four
penetrator particles.
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Fic. 7. Histories of the hydrostatic pressure and effective stress for four penetrator particies.

Because of the assumptions of axisymmetric deformations. there is only vne non-zero
component of spin. The histories of the spin for the four penetrator particles, plotted in
Fig. 18, reveal that the material particle C that is near the free surface has the highest
value of spin. The peak value of the plastic spin for the material particle C is twice that
for each of the other three particles. This peak value of the spin at C occurs when it has
crossed-over to the right of its bottom-most position and is flowing rearwards.

6.2 Histories of field variables for rarget particles

In Fig. 19 we have plotted the r- and :-coordinates of the target material particles
for different values of time t; their positions at time t =0 were E(0.10, -3.12) and
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F1G. 18. Histories of the spin of four penetrator particles.
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F1G. 19. Variation of r-, z-coordinates of two different target particles at different times.

60"
/‘ 1
Jf
} 35
| F
| :
| /
z 10 34
4
|/
! r
-1.54 /
if ¢
i
*I
- 40l
10 12 0 5
Time

F(0.15, —3.12), respectively. The radial and axial components of the velocity of these
particles are plotted in Fig. 20<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>